Astrophysique nucléaire De l'antimatière dans le centre galactique

Jean-François Le Borgne

AMAS (+)

(+) Astronome/professeur émérite, IRAP, observatoire de Toulouse (OMP) Chercheur associé, Laboratoire d'astrophysique de Marseille Président du GEOS

La physique nucléaire en astrophysique : hautes énergies

La **physique nucléaire** concerne les noyau atomiques, les nucléons (protons, neutrons) et les particules élémentaires : leptons (électrons, muons, taus, neutrinos), quarks et bosons.

Intérieur des étoiles:

- réactions thermonucléaires produisent l'énergie qui maintient les étoiles en équilibre et leur permet de rayonner.

- nucléosynthèse pour fabriquer les éléments lourds.

Explosions des supernovæ:

- nucléosynthèse des éléments les plus lourds dont les isotopes se retrouvent expulsés dans le milieu interstellaire.

Milieu interstellaire: le rayonnement cosmique

Matière / antimatière

Chaque particule de matière (nucléons et particules élémentaires) a son antiparticule : proton \rightarrow antiproton, électron \rightarrow anti-électron ...

Même masse, charge électrique opposée, spin opposé. Dans le cas de l'électron, on a l'habitude d'appeler son antiparticule « positron ».

Une propriété importante : matière et antimatière ne peuvent se supporter, leur rencontre est explosive : **annihilation** avec émission de photons.

Pourquoi l'univers est-il composé presque exclusivement de matière ? C'est une bonne question ...

Il y a toutefois quelques antiparticules qui trainent dans la Galaxie, créés par la décroissance radioactive des isotopes fabriqués dans les étoiles, les SN et par divers phénomènes très énergétiques.

Géographie de la Galaxie

Plantons le décor !

Tout se passe là dedans :

Spectrométrie gamma

Diode au germanium (Ge) : Spectromètre à haute résolution.

2.1.1.2 44Ti

Figure 2.3: Schematic of the relevant decays of ⁴⁴Ti

Exemple de diagramme de décroissance radioactive :

L'isotope de titane ⁴⁴Ti est un produit de la nucléosynthèse.

Il se transforme en calcium stable ⁴⁴Ca par l'intermédiaire d'un noyau de scandium ⁴⁴Sc et l'émission d'un positron et d'un photon γ

$${}^{44}Ti \rightarrow {}^{44}Sc^*$$

$${}^{44}Sc \rightarrow {}^{44}Ca^* + e^+ + \gamma + \nu_e \qquad 95\% \ \beta^+$$

© B. Johns, 2010, thèse, Clemson University

Grou Pério	pe → 1 IA	Tableau périodique des éléments																18 VIIA
1	hydrogène 1 H 1,00794	← nom de l' ← numér ← symbo ← masse ati	élément (gaz, liquid To atomique ble chimique omique relative ou [ci	e ou solide à C elle de l'isotope	I°C et 101,3 kP le plus stable]	a)							13 IIA	14 IVA	15 VA	16 VIA	17 VIA	hélium 2 He 4,002602
2	lithium 3 Li 6,941	béryllium 4 Be 9,012182											bore 5 B 10,811	carbone 6 C 12,0107	azote 7 N 14,00674	oxygène 8 O 15,9994	fluor 9 F 18,9984032	néon 10 Ne 20,1797
3	sodium 11 Na 22,98976928	magnésium 12 Mg 24,3050	3 IIB	4 IVB	5 VB	6 VIB	7 VIB	8	9 VIIIB	10	11 IB	12 IB	aluminium 13 Al 26,9815386	silicium 14 Si 28,0855	phosphore 15 P 30,973762	soufre 16 S 32,066	chlore 17 Cl 35,4527	argon 18 Ar 39,948
4	potassium 19 K 39,0983	calcium 20 Ca 40,078	scandium 21 SC 44,955912	titane 22 TÎ 47,867	vanadium 23 V 50,9415	chrome 24 Cr 51,9961	manganèse 25 Mn 54,938045	fer 26 Fe 55,845	cobalt 27 C0 58,933195	nickel 28 Ni 58,6934	cuivre 29 CU 63,546	zinc 30 Zn 65,39	gallium 31 Ga 69,723	germanium 32 Ge 72,61	arsenic 33 AS 74,92160	sélénium 34 Se 78,96	brome 35 Br 79,904	krypton 36 Kr 83,80
5	rubidium 37 Rb 85,4678	strontium 38 Sr 87,62	yttrium 39 Y 88,90585	zirconium 40 Zr 91,224	niobium 41 Nb 92,90638	molybdène 42 Mo 95,94	technétium 43 TC 97,9072	ruthénium 44 Ru 101,07	rhodium 45 Rh 102,90550	palladium 46 Pd 106,42	argent 47 Ag 107,8682	cadmium 48 Cd 112,411	indium 49 In 114,818	étain 50 Sn 118,710	antimoine 51 Sb 121,760	tellure 52 Te 127,60	iode 53 I 126,90447	xénon 54 Xe 131,29
6	césium 55 Cs 132,9054519	baryum 56 Ba 137,327	lanthanides 57-71	hafnium 72 Hf 178,49	tantale 73 Ta 180,94788	tungstène 74 W 183,84	rhénium 75 Re 186,207	osmium 76 OS 190,23	iridium 77 Ir 192,217	platine 78 Pt 195,084	or 79 Au 196,966569	mercure 80 Hg 200,59	thallium 81 TI 204,3833	plomb 82 Pb 207,2	bismuth 83 Bi 208,98040	polonium 84 P0 [208,9824]	astate 85 At [209,9871]	radon 86 Rn [222,0176]
7	francium 87 Fr [223,0197]	radium 88 Ra [226,0254]	actinides 89–103	rutherfordium 104 Rf [263,1125]	dubnium 105 Db [262,1144]	seaborgium 106 Sg [266,1219]	bohrium 107 Bh [264,1247]	hassium 108 Hs [269,1341]	meitnérium 109 Mt [268,1388]	darmstadtium 110 DS [272,1463]	roentgenium 111 Rg [272,1535]	copemicium 112 Cn [277]	ununtrium 113 Uut [284]	flérovium 114 Fl [289]	ununpentium 115 Uup [288]	livermorium 116 LV [292]	ununseptium 117 Uus [292]	ununoctium 118 Uuo [294]
				lanthane 57 La 138,90547	cérium 58 Ce 140,116	praséodyme 59 Pr 140,90765	néodyme 60 Nd 144,242	prométhium 61 Pm [144,9127]	samarium 62 Sm 150,36	europium 63 EU 151,964	gadolinium 64 Gd 157,25	terbium 65 Tb 158,92535	dysprosium 66 Dy 162,500	holmium 67 H0 164,93032	erbium 68 Er 167,259	thulium 69 Tm 168,93421	ytterbium 70 Yb 173,04	lutécium 71 LU 174,967
© CERN	I		L	actinium 89 Ac [227,0277]	thorium 90 Th 232,03806	protactinium 91 Pa 231,03588	uranium 92 U 238,02891	neptunium 93 Np [237,0482]	plutonium 94 Pu [244,0642]	américium 95 Am [243,0614]	curium 96 Cm [247,0703]	berkélium 97 Bk [247,0703]	californium 98 Cf [251,0796]	einsteinium 99 Es [252,0830]	fermium 100 Fm [257,0951]	mendélévium 101 Md [258,0984]	nobélium 102 No [259,1011]	lawrencium 103 Lr [262,110]
	métau alcalin	x alcali s terre	no- lanthanid	es actir	ides tr	étaux de ansition	métaux pauvres	métalloïdes	i non-mét	aux hak	ogènes g	gaz nobles			prim	ordial dés	intégration d'autres léments	synthétique

Collaboration du Centre d'Étude Spatiale des Rayonnements (CESR, Toulouse) et du Commissariat à l'Énergie Atomique (CEA, Saclay)

PIs de l'expérience et superviseurs à Toulouse : François Albernhe et Gilbert Vedrenne (CESR)

Analyse des données des campagnes de lancement de ballons stratosphériques au Brésil (1976-1977).

> Schéma de la nacelle de l'expérience ballon PILOT (CESR). © Wikipedia

Ballons stratosphériques CNES

Cristal de germanium (Ge) dopé au lithium (Li) Refroidi à la température de l'azote liquide (-196°C)

Placé dans un système d'anticoïncidence : 4 cristaux de Nal.

Cristal de germanium (Ge) dopé au lithium (Li) Refroidi à la température de l'azote liquide (-196°C)

Placé dans un système d'anticoïncidence : 4 cristaux de Nal.

Lorsqu'un photon gamma ou une particule chargée est détecté dans un des cristaux de Nal, le système d'analyse du détecteur de Ge est bloqué pendant 20µs.

Seuls les photons venant de la partie supérieure du détecteur sont analysés.

Figure 3. Schéma du puits d'anticoincidence

Efficacité du système d'anticoïncidence.

La largeur à mi-hauteur est d'environ 50° entre 500 keV et 1 MeV

HISTOGRAMME COMMENCANT AU CANAL NO 2048 NO D HISTOGRAMME 1 J H KN S MS DU DEBUT DE CET HISTOGRAM 0 7 23 0 9 APPES AVOIR REFERE UN PIC D ETALONNAGE IL FAUDRA AFFICHER SON TYPE 1. PIC DE SIKEV, 2-PIC DE 898KEV, 3-PIC DE 1836KEV F.UR :APTER LE MAX DJ PIC AMENER LE RETICULE SUR LE POINT CHOISI PUIS FAIRE R LOUFE. JELIMITER LA ZONE CHOISIE PAR SON POINT LE PLUS BAS A GALCHE ET SON POINT LE PLUS HAUT P DROITE, CAPTER CES E POINTS AVEC LE RETICULE.

La calibration en énergie se fait à l'aide d'une source embarquée de ⁸⁸Y (raies à 898 keV et 1836 keV).

and to an analytic set is the set of the set

SI L ON VEUT AGRANDIR UNE PORTION D IMAGE TAPER O NO CANAL 1703029 TAPER LE TYPE DE PIC 1,2,3,4 2 SI L OM VEUT AGRANDIR UNE PORTION D IMAGE TAPER O NO CANAL 7B02314 TAPER LE TYPE DE PIC 1,2,3,4 1 SI L ON VEUT AGRANDIR UNE PORTION D IMAGE TAPER O OU AFFICHER UNE AUTRE PARTIE D HISTOGRAMME TAPER 2 JOULEZ VOUS CONSERVEZ LE POINTI-OUI ET 0-NON 1 OU AFFICHER UNE AUTRE PARTIE D HISTOGRAMME TAPER 20 VOULEZ VOUS CONSERVEZ LE POINTI-OUI ET 0-NON 1 OU AFFICHER UNE AUTRE PARTIE D HISTOGRAMME TAFER 29 La mesure de l'intensité d'une raie se fait en intégrant le signal dans une bande centrée sur la rie et en lui soustrayant les valeurs du continu de chaque côté.

Les positrons sont produits par radioactivité β +

Production de deux rayons gamma à 511 keV, annihilation électrons-positrons

© B. Johns, 2010, thèse, Clemson University

Les positrons sont produits par radioactivité β +

Production de deux rayons gamma à 511 keV, annihilation électrons-positrons :

 $e^+ + e^- \rightarrow y + y$

 $E = m c^2 (1+\gamma) (1\pm\beta)/2 \sim 511 \text{ keV} (\beta\sim 0)$

Décroissance du positronium

$$^{1}S_{0}$$
: ~25%, 1.25×10⁻¹⁰s, $\rightarrow 2\gamma$
 $^{3}S_{0}$: ~75%, 1.5×10⁻⁷s, $\rightarrow 3\gamma \rightarrow broader line$

Désintégration d'une particule du rayonnement cosmique dans l'atmosphère

→ Création de positrons e+

© wikipedia

Figure 11. Spectre de bruit de fond - temps d'intégration 22 heures (20 août 1978)

Observation du centre galactique

Le détecteur est vertical, le CG passe au zénith

Figure 21. Variation du flux détecté à 511 KeV, corrigé des variations d'altitude, en fonction du temps sidéral + 8 février 1977 -+- 14 février 1977 + 17 février 1977

Mesure du flux de la raie à 511 keV

Flux mesuré : 2.9 ± 1.6 10⁻³ photons s⁻¹ cm⁻² (1.8 σ ! \cong)

Comparaison avec les mesures contemporaines

Première expérience utilisant un détecteur au germanium. Confirme que l'émission à 511 keV est étendue et non ponctuelle.

Fig. 1. Observations of 511 keV line emission from the GC direction. Equivalent point source fluxes are plotted for the wide FOV experiments. Measurements made with Ge detectors are indicated with an arrow. Only statistical error bars are shown for the SMM results.

M. Leventhal, 1991, Adv. Space Res., 11, 8157.

Mesures récentes : le satellite Integral (2002)

Figure 1. Spectrum of the e^+e^- annihilation radiation (fixed background model) detected by SPI from the GC region and the best-fitting model (thick solid line, see Table 1 for parameters). The dotted line shows the orthopositronium radiation and the dashed line shows the underlying power-law continuum.

Knödlseder et al., 2005, A&A 441,513.

Mesures récentes : le satellite Integral (2002)

Knödlseder et al., 2005, A&A 441,513.

Mesures récentes : le satellite Integral (2002)

Modèle possible de distribution de l'émission à 511 keV, avec une composante du bulbe et du disque :

Knödlseder et al., 2005, A&A 441,513.

Origine des positrons galactiques

Sources possibles de positrons galactiques (J. Knödlseder, 2005) :

L'émission à 511 keV est essentiellement observée dans le bulbe galactique avec une distribution à symétrie sphérique. Faible contribution dans le disque.

Les sources suivantes sont improbables pour le CG parce qu'elles se répartissent dans le disque :

- Les étoiles Wolf-Rayet et les SN produisent des radio-isotopes β +.
- Une hypernova récente au centre galactique.
- Interactions des rayons cosmiques : N + p $\rightarrow \pi + \rightarrow e +$
- Binaires X de grande masse : trou noir ou étoile à neutrons + étoile supergéante bleue ou Wolf-Rayet.
- Trous noirs galactiques et microquasars.

Elles peuvent expliquer la composante du disque.

Origine des positrons galactiques

Sources possibles de positrons galactiques (J. Knödlseder, 2005) :

L'émission à 511 keV est essentiellement observée dans le bulbe galactique avec une distribution à symétrie sphérique. Faible contribution dans le disque.

Les sources suivantes sont possibles parce qu'elles se concentrent dans le bulbe :

- Binaires X de faible masse (LMBX) : trou noir ou étoile à neutrons + étoile de petite masse (séquence principale ou géante rouge).
- Supernovae de type la (SNs thermonucléaires) : Systèmes binaires serrés avec une naine blanche et une autre étoile quelconque. Produisent des radio-isotopes β+ de ⁵⁶Co (τ=111day)
- Hypothétiques WIMPS (weakly interactive massives particles)

[©] wikipedia